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Failure due to fatigue in fiber bundles and solids
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We consider first a homogeneous fiber bundle model where all the fibers have got the same stress threshold
(o) beyond which all fail simultaneously in absence of noise. At finite noise, the bundle acquires a fatigue
behavior due to the noise-induced failure probability at any stees¥Ve solve this dynamics of failure
analytically and show that the average failure timef the bundle decreases exponentiallycas o from
below and7=0 for o=0.. We also determine the avalanche size distribution during such failure and find a
power law decay. We compare this fatigue behavior with that obtained phenomenologically for the nucleation
of the Griffith cracks. Next we study numerically the fatigue behavior of random fiber bundles having simple
distributions of individual fiber strengths, at stressess than the bundle’s strengfy (beyond which it fails
instantly. The average failure time is again seen to decrease exponentiallyrasa, from below and the
avalanche size distribution shows similar power law decay. These results are also in broad agreement with
experimental observations on fatigue in solids. We believe, these observations regarding the failure time are
useful for quantum breakdown phenomena in disordered systems.
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[. INTRODUCTION sample:7#0 for <o, and7=0 for o=0.
Here, we study first a phenomenological theory of crack
If one puts a load or stressrf on a solid or applies a nucleation, following Griffith[4,6], at finite temperatur€T)

voltage across an electrical circuit, a strain in the solid or éand estimate the average failure timet any stressr less
current through the circuit develops, which grows linearlythano.. We then develop a simple model of fatigue failure
(Hooke’s law or Ohm’s lawwith the stress or voltage. If the in a democratic fiber bundle model containing identical fi-
external load on the system increases beyond its threshoRers (having equal threshold strengthy), where the fibers
limit (o), the system fails: stress drops to zero due to h_ave a flnltt_e nmse-mdgced _fallure probability. We have _de-
fracture of the solid. The same occurs when the voltage oRved analytically the failure tmle for the bundle as a function
the network exceeds its limit and the current drops to zer®f applied stress€) and noise T). This result for the model
due to the fuse of the circuit. Similar failures occur in dielec-iS compared with that obtained for the phenomenological
tric materials when the electric field across the sample extheory of crack nucleation at finite temperature. It is also in
ceeds beyond its limit, and dielectric breakdown sets inProad agreement with some recent experimental observations
These failures usually nucleate around the defects in th@n fatigue in disordered solidst,7]. Next, we derive the
solid, and the failure behavior and its statistics therefore cru‘:’“’.""l"’mChe SI1z€ distribution in this fixed strength model ana-
cially depend on the disorder or impurity distribution within lytically and find robust power law decay. The above analytic

the sample. Theséquasistatit failure properties of disor- results have been confirmed through the numerical studies on

. . . : the same model. Finally we consider random fiber bundles
dered solids have been studied extensively in recent years. . L o :
1], with simple, yet nontrivial, distributions of the fiber

strengths. Our numerical results show that for all these fiber

. The_ dynamlps of.these faﬂures n .SUCh ;ystems are qultBundles, the average time to failure) (decreases exponen-
intriguing and is being studied very intensively these days,.

The critical dynamics of failure and its universality class intIaIIy as the stress levet approa_lcheg bgnd!e’s strengml; .
the democratidglobal load sharingfiber bundle mode]2] from below and the avalanche.S|ze dlstr|but|ons. s'h.ow 5|m|lgr
has been established very recertB}. These dynamics of pOwer _Iaw decay. W? also dls_cqss the p_Iau5|b|I|ty O.f this
failure are intrinsic and induced by the successive stress ﬁpmse-lnduc_e}jfallure n o_ther similar situations. In particu-
distributions due to the failure of weaker fibers. However, a c?r' we clf]on5|der the.vfalldlty of olur r_no(cjj_ell mtquat:]tunlw(dbreak—
important kind of dynamical failure due to fatig{#] occurs own p enomenfﬁ]. for examplé, In dielectric bréakdown
in such disordered systems when the fibers have an effecti\)@h.er.e the microscopic failure Of. thg dielectric grains acquire
probability to fail under any streg$], or as the microcracks a f|.n|te probablllty "’}t any e'?c”'c f.'el.d due to quantum tun-
within the solid grow at the cracl1< tips with time due to neling. The failure time and its variation with the strength of
chemical diffusion in the atmosphefd]. The system then the_ external field in S”Ch a quantum fa||ure can give us an
fails under a stress less than its normal strengt}) @nd the estimate of the tunneling frequencies involved.

time of failure (r) depends on the load applied on the Il TIME FOR FRACTURE IN THE GRIFFITH

NUCLEATION MODEL

*Email address: spradhan@cmp.saha.ernet.in Griffith in 1920, equating the released elastic energy of a
"Email address: bikas@cmp.saha.ernet.in growing crack inside a solid with the energy of the newly
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created crack surfaces, came to a quantitative estimate of thgithout any noise T=0), the model is trivial: the bundle

fracture strength of a solid containing an already existingyoes not fail(failure time 7 is infinity) for stresso< o, but
fixed geometry microcrack. Assuming the linear elasticityit fajls immediately ¢-=0) for o=o.. We now assume that
behavior up _to the breaking point of2a brlgtle solid, the ré-aach such fiber has a finite probabilR( o, ) of failure at
leased elastic energy becomig,=(c/Y)l; for a three- ¢ induced b S

dimensional elastic solid under stresand modulus of elas- &MY S€S INAUCEd Dy & NONZETo Nol

ticity Y, containing a microcrack of lengtH,. The 1

corresponding surface energy= ¢l3, where¢ denotes the _ iex;{ _ :<2 — ) , Oso<o,
(crack surface energy density. Using the concept of energy P(a,T)=4 ¢ g )
balance, Griffith equated the differential increment in the 1, >0,

elastic energydE,, with the corresponding surface energy
incrementdEg as the crack propagates a further lendgth  As one can see, each fiber now has got a nonvanishing prob-
and obtained ability P(,T) to fail under a stress< o at any nonzero
) noise parametef. It may be noted thdunlike T in Eq. (2)
oo=—, Q=\Y¢ (1)  or Eq. (4] T is a dimensionless noise parameteto,T)
‘/E increases a$ increases and for= ¢, P(cr,:l")zl. Unlike

for equilibrium extension of the crack. Heve is the amount  at T=0, the bundle therefore fails at<o. after a finite
of stress for and above which the microcrack propagates ifime 7. Here we assume each fiber to have a fixed threshold
no time(or in a small time dependent on the sound velgcity o, While their breaking probability at any (<o) is due
and causes a macroscopic failure of the sample. to noise-activated hopping over the barrier height < o).
This quasistatic picture can be extended to fatigue behavFhis differs from the earlier model studi¢§,9] where the
ior of crack propagation for <o . At any stressr less than load distribution is noise induced.
o., the cracks can still nucleafé] for a further extension at

any finite temperaturd with a probability ~exd —E/KgT] A. Failure time
ly, th le fails withi fail i =~ , :
gir:/oel;ncg;sequent y. the sample falls within a failure time At T#0 and under any stress (<o), some fibers fail
due to noise and the load gets shared among the surviving
7 1~exd —E(lo)/kgT], (2) fibers, wh_ich, in turn, enhances their stress value, induc_ing
further failure. Denoting the fraction of fibers that remain
where intact at timet by U, a discrete time recursion relatidsee
) Ref.[3]) can be written as
g
E(lg)=¢l5— 7)|g 3 o~
U’[+1:Ut 1-P U_[,T ’ (6)

is the crack(of lengthl,) nucleation energy. Herkg is the
Boltzman factor. One can therefore express @fj.as where o/U;=L/(NU,) is the redistributed load per fiber
among theN U, surviving fibers at timd. In the continuum

o2 limit, we can write the above recursion relation in a differ-
~exp Al 1-—| |, (4 ential form
UC
where (the dimensionless parametek=1302/(YksT) and _d_UzieX _i(ﬁu_1> , @
o is given by Eqg.(1). This immediately suggests that the dt o o

failure time grows exponentially foor <o, and approaches
infinity if the stresso is much less thaw. when the tem-  9ving
peratureT is small, whereas becomes vanishingly small as

the stressr exceedsr, . — [Tgi= ﬁexp( B i) flexp{i(ﬁ) uldu  @®
0 o 0 T\O
Ill. FATIGUE IN A HOMOGENEOUS DEMOCRATIC
FIBER BUNDLE MODEL or
Fatigue in fiber bundle model was first studied by Cole- _ p( 1 o
man in 19585]. Thermally activated failures of fiber have r=Texp — :) exp( —,,) -1, 9
recently been considered and approximate fatigue behavior oT

has been studief®]. We consider here a very simple fiber

bundle model with noise-induced activated failure, for WhiChfort UU< Te- OF?r ‘TZEUC’ ;tartiggsﬂomut: 1_%t t=0, one
the dynamics can be analytically solved. getsU., ;=0 from Eqs.(5) and(6), giving 7=0.

Let us consider a homogeneous bundleNdibers under For smallT and aso— o, =T exﬂ:(%/ffjl)ﬁ]- This
load L(=No), each having identical failure strength. failure time 7 therefore approaches infinity ds-0. Foro
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FIG. 1. The simulation results showing variation of average failure timgainst(a) stresso- and (b) noiseT, for a bundle containing
N= 10" fibers. The theoretical results are shown by dotted and dashedfines Eq. (9)]. The insets show the simulation results for the
variation of the fractiorlJ of unbroken fibers with time for differentT values[1.2 (cross and 1.0(plus)] in (a) ando values[0.15(cross
and 0.12(plus)] in (b). The dotted and dashed lines represent the theoretical régagks(9) and (10)].

<o, one gets finite failure time, which decreases expo- Here the avalanche siza can also be interpreted as the

nentially aso approaches . or asT increases and=0 for ~ rate of breaking U/dt) and it varies with time as 7
o=0,. This last feature is absent in the earlier formulations—t) "7, y=1 ast—t.,=7. Since 7—t corresponds to the
[9]. However, all these features are very desirable and are igumulative probability/,D(m)dm of avalanches beyont
gualitative agreement with the recent experimental observeene gets
tions[7]. This is also comparable with the phenomenological
results from the Griffith theory discussed in the earlier sec- —a _
tion, although the crack size effect in the Griffith theory dif- D(m)~m™*,  a=2, (12
feres from that in the fiber bundle case. Our numerical study
confirms the above analytic resulisbtained using the con- for the (differentia) avalanche size distributioR (m). Also,
tinuum version of the recursion relatiof)] (see Fig. 1  the exponent of power law decay in E42) is independent
well. of stresso and noise levell, which has been confirmed
through numerical simulationsee Fig. 2 It may be men-
B. Avalanche size distribution tioned that such avalanches manifest in the ultrasonic emis-
From the recursion relatiof6) or (7), one can see that in sions du_ring the_ propagation of fracture in the solid, an_d t_he
each unit time interval a number of fibers break giving anultrasonic amp_lltuc_les are also observed to have similar
avalanche size for the breaking. The avalanche size, ther@OWer law distributior{1].
fore, is given bydU/dt and during the entire failure period

7, different sizes of avalanches take place. Solvingugt) 10
from Eq. (7) one gets m A
10 | o &
=}
bl 71 102 k. ©
Ult)y=—Inz————=+1|, (10 S
Oc | Texp—1/T) — '
\E, 10°
. . . Q
employing the expressiof®) for 7. One can easily check 3
thatU(t)=1 att=0 andU(t)=0 att=r (see Fig. L Also T
ast—t.=r, U(t) decays as In{—t)~(r—t)? with =0,
from Eg. (10). ExpressingdU/dt as the avalanche sizs, 0%
one gets from Eqg(10) e
10"51 [ 11;'2 18‘ 3x107
m
—t
m~ i~ .,77~ +1~7—t, (11 FIG. 2. The simulation results for the distributi@{m) of ava-
T exp(—1/T) lanches in the bundle with=10° (averaged over forealizations:
B 0=0.2, T=0.8 (triangl®, c=0.15, T=0.8 (circle), and ¢=0.15,
for T—0. T=1.0(squaré. The dashed line corresponds to a decay power 2.0.
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FIG. 3. Typical fiber strength distributiong o;) considered and the simulation results for fatigue behat@rmaverage failure time vs

noiseT (for three different stress values) and (b) 7 vs o (for three different noise vaIue%) are shown folN= 10" fibers. The time
variation of fraction of surviving fibers are shown in the insets for the three modl@lgh uniform p(o.), B with linearly increasing (o),
andC with linearly decreasing(o.); all having a cutoff air.=1. The dotted lines ifia) and(b) correspond to the fit with expressiéhd)

whereo.=~0.245 in modelA (exact value= 1/4 [3]), o.=0.370 in modeB (exact value= \4/27 [3]), o.=0.148 in modelC (exact value
=4/27(3)).

IV. SIMULATION RESULTS FOR FATIGUE FAILURE o.>1, (2) linearly increasing distribution of fiber strength
IN RANDOM FIBER BUNDLE MODELS wherep(o.) =20, for 0<o.<1 andp(o.)=0 for o.>1,

In order to investigate the fatigue behavior in random fi-2nd (3) linearly decreasing distribution of fiber strength
ber bundles we consider three different kinds of fiberWhere p(oc)=2(1-o) for 0<o =<1 andp(o)=0 for
strength distributionp(o): (1) uniform distribution of fiber o.>1. It has been already shown analyticdl8j, from the
strength wherep(o.)=1 for 0<o.<1 andp(o.)=0 for  dynamics of failure in all these three kinds of fiber bundles in
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FIG. 4. The simulation results for the distributiolym) of
avalanchegm) in the three random fiber bundles with=10° (av-

eraged over % 10° realizationy for model A with ¢=0.07, T
=0.5 (squarg, for modelB with ¢=0.12, T=0.4 (circle), and for

model C with ¢=0.04, T=0.5 (triangle. The dashed line corre-
sponds to a decay power 2.0.

the absence of any noigeanishingT or T in Eq. (5)], that
the bundle’s strengthr.=1/4 for modelA, o.=\/4/27 for
model B, and .= 4/27 for modelC. We now consider the
effect of the noiseT inducing the failure probability
P(o, T)=exd —(1/T)(o./oc—1)] for 0<o<o, and 1 for
o>o, in the(fatigug dynamics of such bundles, whese
is the strength of the individual fibers in the bundle.

PHYSICAL REVIEW E57, 046124 (2003

V. SUMMARY AND DISCUSSIONS

First, we have studied analytically the macroscopic failure
of a homogeneous fiber bundle model where each fiber has a

unigue strength«.). At zero noise 7'('=0) all the fibers of

the bundle fail simultaneously for=o,, while at T#0
each fiber has got a nonvanishing failure probabilgiven

by Eqg.(5)] due to the thermal-like activation. The dynamics
of failure of the bundle has been solved using the continuum
version of the recursion relatiof®) for global load sharing
case. The resulting expressi@) for the average failure time
(7) has qualitative features similar to tH&tq. (4)] obtained
from the phenomenological nucleation rate theory applied
for a Griffith’s crack. Both the forms have got the desirable
features that- decreases exponentially asapproachesr,
from below andr=0 for o0=0.. As mentioned already, al-
though the above features agree qualitatively with the experi-
mental observations, the precise mathematical forms we ob-
tained here differ from the experimentally indicated forms
[7]. As timet approaches., the fraction of unbroken fibers
decays as{—t)?, B=0, and its rate of breaking grows as
(r—1t)" 7, with y=1. The avalanche size distributi@(m)

is also obtained analytically for the dynamics. It is seen to
have a robust power law governed decay behai¢m)
~m~“ with a=2. Our numerical results also confirm this
behavior. Next, we have studied numerically the dynamics
and the average breaking timdor bundles where the break-
ing strengths are not fixed and are given by the three simple
distributionsp(o). We find that for all the three cases, the
averager fits well form (13), which is very close to the
analytic form for7 in Eq. (9) for fixed failure threshold of

We have studied these numerically, using the Monte Carléhe fibers. We have also investigated the avalanche size dis-

method(for bundles havindN =10 or more fibers We have
considered bundles having the above three kimdsE, and

C) of p(o.) one by one. The noise-induced failure men-

tributions in these models and obtained the same power law
behavior, as for the fixed strength fibers.

As mentioned already, here the noise paraniéten Eq.

tioned above is realized only in a Monte Carlo way. Taking(5)] cannot be identified with temperaturd@ (n Eqg. (2)],
averages typically over £0Monte Carlo runs the fraction of which scales with thécrack energy. In fact, although this

unbroken fibersU(t) at any timet at a fixed stress level
cr(<5c) is noted. At anyo, the average failure time[when

failure model and its dynamics are applied here to classical
breakdown phenomena occurring in the fiber bundle model

U(t)=0] is extracted. The form of the distributions and the OF (classical percolating solidg1], they seem to be appli-

variations of average time with noisE and stresss are
shown for the three types of bundles. We find thdits a
form

(13

for all types of bundlegindicated by dotted lines in Fig.)3
We find that this phenomenological forth3) is indeed very
close to the analytic resul) for the fixed strength fiber

cable to quantum breakdown due to tunneling as well. Fail-
ures in quantum percolating solids beyond their linear con-
ducting or insulating regime, have not been studied much
(see Ref[8]). In fact, like the fusdor dielectric breakdown
problems of percolating(or nonpercolating systems of
conductor-insulator networks, one can think of the field in-
duced breakdown of a quantum percolating system where the
phase of the system is determined through two energy scales:
Fermi energye; and the mobility edge:.. For ;> €. the
system is in conducting phase and it goes to insulating phase
for €;<e.. This metal-insulator transition ag;=e; (in
higher than two-dimensional systenand the scaling prop-
erty of conductivity fore;> €. have been studied extensively

bundle; it is somewhat approximate for these bundles and fitﬁo 11. For the insulating phasee(<e.), one can have

better for lower noise {) and stress ) levels. The ava-
lanche size distributions in all these three modéls B, and
C) have been studied numericallgee Fig. 4 and we find
them to follow the same power law decd$2) with «

=2.0.

electric field inducedZener typé breakdown(similar to di-
electric breakdown of nonpercolating classical netwprks
This Zener breakdown of Anderson insulators or the quan-
tum tunneling induced breakdown of impuflecalized in-
sulators has not been studied musbe Refs[8,12]). Unlike
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a (classical fiber bundle model considered here, where all Our study here for fatigue breakdown in the model fiber
the fibers are in parallel, one can consider a dielectric combundles shows that the average failure time for the bundle at
posed of several elements in series having nonzero failurg stress valuer less than the bundle strength. (for fixed
probability for each element due to quantum tunnelifie  gyength fibers or o, (for random fiber strength distribu-

the lj0|se_-|nduced activation considered bl.enmy micro- ions), above which the bundle fails immediately, decreases
scopic failure of such an element would result in increase

field on the surviving elements and this, in turn, would en-€xPonentially as- approaches or o from below. This has
hance their failure probability. A similar dielectric failure &/réady been observed in several experiments qualitatively.
time (7) in such quantum or Anderson insulators is thusWe have demonstrated this fatigue behavior here both ana-
expected under electric field. Here and o, would be re- lytically and numerically for a fixed strength fiber bundle
placed bye; ande., respectively, and would correspond to mModel (Sec. ll) and also numerically for random fiber
the inverse tunneling length determined by the electric fieldoundle models with nontrivial strength distributiotSec.
(with the Planck’s constant as the proportionality factor, in-1V). We also believe that these observations will be useful in
corporating the intrinsic noi$¢8]. quantum breakdown phenomena.
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