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Failure due to fatigue in fiber bundles and solids

Srutarshi Pradhan* and Bikas K. Chakrabarti†

Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
~Received 20 January 2003; published 29 April 2003!

We consider first a homogeneous fiber bundle model where all the fibers have got the same stress threshold
(sc) beyond which all fail simultaneously in absence of noise. At finite noise, the bundle acquires a fatigue
behavior due to the noise-induced failure probability at any stresss. We solve this dynamics of failure
analytically and show that the average failure timet of the bundle decreases exponentially ass→sc from
below andt50 for s>sc . We also determine the avalanche size distribution during such failure and find a
power law decay. We compare this fatigue behavior with that obtained phenomenologically for the nucleation
of the Griffith cracks. Next we study numerically the fatigue behavior of random fiber bundles having simple

distributions of individual fiber strengths, at stresss less than the bundle’s strengths c̃ ~beyond which it fails

instantly!. The average failure timet is again seen to decrease exponentially ass→s c̃ from below and the
avalanche size distribution shows similar power law decay. These results are also in broad agreement with
experimental observations on fatigue in solids. We believe, these observations regarding the failure time are
useful for quantum breakdown phenomena in disordered systems.

DOI: 10.1103/PhysRevE.67.046124 PACS number~s!: 46.50.1a, 62.20.Mk, 64.60.Ht
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I. INTRODUCTION

If one puts a load or stress (s) on a solid or applies a
voltage across an electrical circuit, a strain in the solid o
current through the circuit develops, which grows linea
~Hooke’s law or Ohm’s law! with the stress or voltage. If the
external load on the system increases beyond its thres
limit ( sc), the system fails: stresss drops to zero due to
fracture of the solid. The same occurs when the voltage
the network exceeds its limit and the current drops to z
due to the fuse of the circuit. Similar failures occur in diele
tric materials when the electric field across the sample
ceeds beyond its limit, and dielectric breakdown sets
These failures usually nucleate around the defects in
solid, and the failure behavior and its statistics therefore c
cially depend on the disorder or impurity distribution with
the sample. These~quasistatic! failure properties of disor-
dered solids have been studied extensively in recent y
@1#.

The dynamics of these failures in such systems are q
intriguing and is being studied very intensively these da
The critical dynamics of failure and its universality class
the democratic~global load sharing! fiber bundle model@2#
has been established very recently@3#. These dynamics o
failure are intrinsic and induced by the successive stress
distributions due to the failure of weaker fibers. However,
important kind of dynamical failure due to fatigue@4# occurs
in such disordered systems when the fibers have an effe
probability to fail under any stress@5#, or as the microcracks
within the solid grow at the crack tips with time due
chemical diffusion in the atmosphere@4#. The system then
fails under a stress less than its normal strength (sc) and the
time of failure (t) depends on the load applied on th
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sample:tÞ0 for s,sc andt.0 for s>sc .
Here, we study first a phenomenological theory of cra

nucleation, following Griffith@4,6#, at finite temperature~T!
and estimate the average failure timet at any stresss less
thansc . We then develop a simple model of fatigue failu
in a democratic fiber bundle model containing identical
bers ~having equal threshold strengthsc), where the fibers
have a finite noise-induced failure probability. We have d
rived analytically the failure time for the bundle as a functi
of applied stress (s) and noise (T̃). This result for the model
is compared with that obtained for the phenomenologi
theory of crack nucleation at finite temperature. It is also
broad agreement with some recent experimental observa
on fatigue in disordered solids@4,7#. Next, we derive the
avalanche size distribution in this fixed strength model a
lytically and find robust power law decay. The above analy
results have been confirmed through the numerical studie
the same model. Finally we consider random fiber bund
with simple, yet nontrivial, distributions of the fibe
strengths. Our numerical results show that for all these fi
bundles, the average time to failure (t) decreases exponen
tially as the stress levels approaches bundle’s strengths̃c
from below and the avalanche size distributions show sim
power law decay. We also discuss the plausibility of th
~noise-induced! failure in other similar situations. In particu
lar, we consider the validity of our model in quantum brea
down phenomena@8#: for example, in dielectric breakdown
where the microscopic failure of the dielectric grains acqu
a finite probability at any electric field due to quantum tu
neling. The failure time and its variation with the strength
the external field in such a quantum failure can give us
estimate of the tunneling frequencies involved.

II. TIME FOR FRACTURE IN THE GRIFFITH
NUCLEATION MODEL

Griffith in 1920, equating the released elastic energy o
growing crack inside a solid with the energy of the new
©2003 The American Physical Society24-1
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created crack surfaces, came to a quantitative estimate o
fracture strength of a solid containing an already exist
fixed geometry microcrack. Assuming the linear elastic
behavior up to the breaking point of a brittle solid, the r
leased elastic energy becomesEel5(s2/Y) l 0

3 for a three-
dimensional elastic solid under stresss and modulus of elas
ticity Y, containing a microcrack of lengthl 0. The
corresponding surface energyEs5f l 0

2, wheref denotes the
~crack! surface energy density. Using the concept of ene
balance, Griffith equated the differential increment in t
elastic energydEel with the corresponding surface energ
incrementdEs as the crack propagates a further lengthdl
and obtained

sc5
V

Al 0

, V5AYf ~1!

for equilibrium extension of the crack. Heresc is the amount
of stress for and above which the microcrack propagate
no time~or in a small time dependent on the sound veloci!
and causes a macroscopic failure of the sample.

This quasistatic picture can be extended to fatigue beh
ior of crack propagation fors,sc . At any stresss less than
sc , the cracks can still nucleate@6# for a further extension a
any finite temperatureT with a probability ;exp@2E/kBT#
and, consequently, the sample fails within a failure timet
given by

t21;exp@2E~ l 0!/kBT#, ~2!

where

E~ l 0!5f l 0
22S s2

Y D l 0
3 ~3!

is the crack~of length l 0) nucleation energy. HerekB is the
Boltzman factor. One can therefore express Eq.~2! as

t;expFAS 12
s2

sc
2D G , ~4!

where ~the dimensionless parameter! A5 l 0
3sc

2/(YkBT) and
sc is given by Eq.~1!. This immediately suggests that th
failure timet grows exponentially fors,sc and approaches
infinity if the stresss is much less thansc when the tem-
peratureT is small, whereast becomes vanishingly small a
the stresss exceedssc .

III. FATIGUE IN A HOMOGENEOUS DEMOCRATIC
FIBER BUNDLE MODEL

Fatigue in fiber bundle model was first studied by Co
man in 1958@5#. Thermally activated failures of fiber hav
recently been considered and approximate fatigue beha
has been studied@9#. We consider here a very simple fibe
bundle model with noise-induced activated failure, for whi
the dynamics can be analytically solved.

Let us consider a homogeneous bundle ofN fibers under
load L(5Ns), each having identical failure strengthsc .
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Without any noise (T̃50), the model is trivial: the bundle
does not fail~failure timet is infinity! for stresss,sc , but
it fails immediately (t50) for s>sc . We now assume tha
each such fiber has a finite probabilityP(s,T̃) of failure at
any stresss induced by a nonzero noiseT̃:

P~s,T̃!5H s

sc
expF2

1

T̃
S sc

s
21D G , 0<s<sc

1, s.sc .

~5!

As one can see, each fiber now has got a nonvanishing p
ability P(s,T̃) to fail under a stresss,sc at any nonzero
noise parameterT̃. It may be noted that@unlike T in Eq. ~2!

or Eq. ~4!# T̃ is a dimensionless noise parameter.P(s,T̃)
increases asT̃ increases and fors>sc , P(s,T̃)51. Unlike
at T̃50, the bundle therefore fails ats,sc after a finite
time t. Here we assume each fiber to have a fixed thresh
sc , while their breaking probability at anys (,sc) is due
to noise-activated hopping over the barrier height (sc2s).
This differs from the earlier model studies@5,9# where the
load distribution is noise induced.

A. Failure time

At T̃Þ0 and under any stresss (,sc), some fibers fail
due to noise and the load gets shared among the survi
fibers, which, in turn, enhances their stress value, induc
further failure. Denoting the fraction of fibers that rema
intact at timet by Ut , a discrete time recursion relation~see
Ref. @3#! can be written as

Ut115UtF12PS s

Ut
,T̃D G , ~6!

where s/Ut5L/(NUt) is the redistributed load per fibe
among theNUt surviving fibers at timet. In the continuum
limit, we can write the above recursion relation in a diffe
ential form

2
dU

dt
5

s

sc
expF2

1

T̃
S sc

s
U21D G , ~7!

giving

t5E
0

t

dt5
sc

s
expS 2

1

T̃
D E

0

1

expF 1

T̃
S sc

s DUGdU ~8!

or

t5T̃ expS 2
1

T̃
D FexpS sc

sT̃
D 21G , ~9!

for s,sc . For s>sc , starting fromUt51 at t50, one
getsUt1150 from Eqs.~5! and ~6!, giving t50.

For smallT̃ and ass→sc , t.T̃ exp@(sc /s21)/T̃#. This
failure timet therefore approaches infinity asT̃→0. For s
4-2
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FIG. 1. The simulation results showing variation of average failure timet against~a! stresss and~b! noiseT̃, for a bundle containing
N5105 fibers. The theoretical results are shown by dotted and dashed lines@from Eq. ~9!#. The insets show the simulation results for th

variation of the fractionU of unbroken fibers with timet for different T̃ values@1.2 ~cross! and 1.0~plus!# in ~a! ands values@0.15 ~cross!
and 0.12~plus!# in ~b!. The dotted and dashed lines represent the theoretical results@Eqs.~9! and ~10!#.
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,sc , one gets finite failure timet, which decreases expo
nentially ass approachessc or asT̃ increases andt50 for
s>sc . This last feature is absent in the earlier formulatio
@9#. However, all these features are very desirable and ar
qualitative agreement with the recent experimental obse
tions @7#. This is also comparable with the phenomenologi
results from the Griffith theory discussed in the earlier s
tion, although the crack size effect in the Griffith theory d
feres from that in the fiber bundle case. Our numerical st
confirms the above analytic results@obtained using the con
tinuum version of the recursion relation~6!# ~see Fig. 1!
well.

B. Avalanche size distribution

From the recursion relation~6! or ~7!, one can see that in
each unit time interval a number of fibers break giving
avalanche size for the breaking. The avalanche size, th
fore, is given bydU/dt and during the entire failure perio
t, different sizes of avalanches take place. Solving forU(t)
from Eq. ~7! one gets

U~ t !5
sT̃

sc
lnF t2t

T̃ exp~21/T̃!
11G , ~10!

employing the expression~9! for t. One can easily check
that U(t)51 at t50 andU(t)50 at t5t ~see Fig. 1!. Also
as t→tc[t, U(t) decays as ln(t2t);(t2t)b with b501

from Eq. ~10!. ExpressingdU/dt as the avalanche sizem,
one gets from Eq.~10!

m21;
t2t

T̃ exp~21/T̃!
11;t2t, ~11!

for T̃→0.
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Here the avalanche sizem can also be interpreted as th
rate of breaking (dU/dt) and it varies with time as (t
2t)2g, g51 as t→tc[t. Since t2t corresponds to the
cumulative probability*m

`D(m)dm of avalanches beyondt,
one gets

D~m!;m2a, a52, ~12!

for the ~differential! avalanche size distributionD(m). Also,
the exponent of power law decay in Eq.~12! is independent
of stresss and noise levelT̃, which has been confirmed
through numerical simulations~see Fig. 2!. It may be men-
tioned that such avalanches manifest in the ultrasonic em
sions during the propagation of fracture in the solid, and
ultrasonic amplitudes are also observed to have sim
power law distribution@1#.

FIG. 2. The simulation results for the distributionD(m) of ava-
lanches in the bundle withN5105 ~averaged over 103 realizations!:

s50.2, T̃50.8 ~triangle!, s50.15, T̃50.8 ~circle!, ands50.15,

T̃51.0 ~square!. The dashed line corresponds to a decay power 2
4-3
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FIG. 3. Typical fiber strength distributionsr(sc) considered and the simulation results for fatigue behavior:~a! average failure timet vs

noise T̃ ~for three different stress valuess) and ~b! t vs s ~for three different noise valuesT̃) are shown forN5105 fibers. The time
variation of fraction of surviving fibers are shown in the insets for the three models:A with uniform r(sc), B with linearly increasingr(sc),
andC with linearly decreasingr(sc); all having a cutoff atsc51. The dotted lines in~a! and~b! correspond to the fit with expression~13!

wheres̃c.0.245 in modelA ~exact value51/4 @3#!, s̃c.0.370 in modelB ~exact value5A4/27 @3#!, s̃c.0.148 in modelC ~exact value
54/27 @3#!.
fi
e

h

th

in
IV. SIMULATION RESULTS FOR FATIGUE FAILURE
IN RANDOM FIBER BUNDLE MODELS

In order to investigate the fatigue behavior in random
ber bundles we consider three different kinds of fib
strength distributionsr(sc): ~1! uniform distribution of fiber
strength wherer(sc)51 for 0,sc<1 and r(sc)50 for
04612
-
r

sc.1, ~2! linearly increasing distribution of fiber strengt
wherer(sc)52sc for 0,sc<1 andr(sc)50 for sc.1,
and ~3! linearly decreasing distribution of fiber streng
where r(sc)52(12sc) for 0,sc<1 and r(sc)50 for

sc.1. It has been already shown analytically@3#, from the
dynamics of failure in all these three kinds of fiber bundles
4-4
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FAILURE DUE TO FATIGUE IN FIBER BUNDLES AND . . . PHYSICAL REVIEW E67, 046124 ~2003!
the absence of any noise@vanishingT or T̃ in Eq. ~5!#, that
the bundle’s strengths̃c51/4 for modelA, s̃c5A4/27 for
model B, and s̃c54/27 for modelC. We now consider the
effect of the noise T̃ inducing the failure probability
P(s,T̃)5exp@2(1/T̃)(sc /s21)# for 0,s<sc and 1 for
s.sc , in the~fatigue! dynamics of such bundles, wheresc
is the strength of the individual fibers in the bundle.

We have studied these numerically, using the Monte Ca
method~for bundles havingN5105 or more fibers!. We have
considered bundles having the above three kinds (A, B, and
C) of r(sc) one by one. The noise-induced failure me
tioned above is realized only in a Monte Carlo way. Taki
averages typically over 103 Monte Carlo runs the fraction o
unbroken fibersU(t) at any timet at a fixed stress leve
s(,s̃c) is noted. At anys, the average failure timet @when
U(t)50] is extracted. The form of the distributions and t
variations of average time with noiseT̃ and stresss are
shown for the three types of bundles. We find thatt fits a
form

t5T̃ expS 2
1

T̃
D FexpS s̃c

sT̃
1

1

T̃
D 21G ~13!

for all types of bundles~indicated by dotted lines in Fig. 3!.
We find that this phenomenological form~13! is indeed very
close to the analytic result~9! for the fixed strength fiber
bundle; it is somewhat approximate for these bundles and
better for lower noise (T̃) and stress (s) levels. The ava-
lanche size distributions in all these three models (A, B, and
C) have been studied numerically~see Fig. 4! and we find
them to follow the same power law decay~12! with a
.2.0.

FIG. 4. The simulation results for the distributionsD(m) of
avalanches~m! in the three random fiber bundles withN5105 ~av-

eraged over 43103 realizations!: for model A with s50.07, T̃

50.5 ~square!, for modelB with s50.12, T̃50.4 ~circle!, and for

model C with s50.04, T̃50.5 ~triangle!. The dashed line corre
sponds to a decay power 2.0.
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V. SUMMARY AND DISCUSSIONS

First, we have studied analytically the macroscopic failu
of a homogeneous fiber bundle model where each fiber h
unique strength (sc). At zero noise (T̃50) all the fibers of
the bundle fail simultaneously fors>sc , while at T̃Þ0
each fiber has got a nonvanishing failure probability@given
by Eq. ~5!# due to the thermal-like activation. The dynami
of failure of the bundle has been solved using the continu
version of the recursion relation~6! for global load sharing
case. The resulting expression~8! for the average failure time
(t) has qualitative features similar to that@Eq. ~4!# obtained
from the phenomenological nucleation rate theory appl
for a Griffith’s crack. Both the forms have got the desirab
features thatt decreases exponentially ass approachessc
from below andt.0 for s>sc . As mentioned already, al
though the above features agree qualitatively with the exp
mental observations, the precise mathematical forms we
tained here differ from the experimentally indicated form
@7#. As time t approachest, the fraction of unbroken fibers
decays as (t2t)b, b501 and its rate of breaking grows a
(t2t)2g, with g51. The avalanche size distributionD(m)
is also obtained analytically for the dynamics. It is seen
have a robust power law governed decay behaviorD(m)
;m2a with a52. Our numerical results also confirm th
behavior. Next, we have studied numerically the dynam
and the average breaking timet for bundles where the break
ing strengths are not fixed and are given by the three sim
distributionsr(sc). We find that for all the three cases, th
averaget fits well form ~13!, which is very close to the
analytic form fort in Eq. ~9! for fixed failure threshold of
the fibers. We have also investigated the avalanche size
tributions in these models and obtained the same power
behavior, as for the fixed strength fibers.

As mentioned already, here the noise parameter@ T̃ in Eq.
~5!# cannot be identified with temperature (T in Eq. ~2!#,
which scales with the~crack! energy. In fact, although this
failure model and its dynamics are applied here to class
breakdown phenomena occurring in the fiber bundle mo
or ~classical! percolating solids@1#, they seem to be appli
cable to quantum breakdown due to tunneling as well. F
ures in quantum percolating solids beyond their linear c
ducting or insulating regime, have not been studied mu
~see Ref.@8#!. In fact, like the fuse~or dielectric breakdown!
problems of percolating~or nonpercolating! systems of
conductor-insulator networks, one can think of the field
duced breakdown of a quantum percolating system where
phase of the system is determined through two energy sc
Fermi energye f and the mobility edgeec . For e f.ec the
system is in conducting phase and it goes to insulating ph
for e f,ec . This metal-insulator transition ate f5ec ~in
higher than two-dimensional systems! and the scaling prop-
erty of conductivity fore f.ec have been studied extensive
@10,11#. For the insulating phase (e f,ec), one can have
electric field induced~Zener type! breakdown~similar to di-
electric breakdown of nonpercolating classical network!.
This Zener breakdown of Anderson insulators or the qu
tum tunneling induced breakdown of impure~localized! in-
sulators has not been studied much~see Refs.@8,12#!. Unlike
4-5
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a ~classical! fiber bundle model considered here, where
the fibers are in parallel, one can consider a dielectric co
posed of several elements in series having nonzero fa
probability for each element due to quantum tunneling~like
the noise-induced activation considered here!. Any micro-
scopic failure of such an element would result in increa
field on the surviving elements and this, in turn, would e
hance their failure probability. A similar dielectric failur
time (t) in such quantum or Anderson insulators is th
expected under electric field. Heres and sc would be re-
placed bye f andec , respectively, andT̃ would correspond to
the inverse tunneling length determined by the electric fi
~with the Planck’s constant as the proportionality factor,
corporating the intrinsic noise! @8#.
rt
nd
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Our study here for fatigue breakdown in the model fib
bundles shows that the average failure time for the bundl
a stress values less than the bundle strengthsc ~for fixed

strength fibers! or s̃c ~for random fiber strength distribu
tions!, above which the bundle fails immediately, decrea

exponentially ass approachessc or s̃c from below. This has
already been observed in several experiments qualitativ
We have demonstrated this fatigue behavior here both a
lytically and numerically for a fixed strength fiber bund
model ~Sec. III! and also numerically for random fibe
bundle models with nontrivial strength distributions~Sec.
IV !. We also believe that these observations will be usefu
quantum breakdown phenomena.
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